Title: | Multivariate Meta-Analysis |
---|---|
Description: | Functions to run fixed effects or random effects multivariate meta-analysis. |
Authors: | Han Chen |
Maintainer: | Han Chen <[email protected]> |
License: | GPL-3 |
Version: | 1.1 |
Built: | 2025-02-17 04:29:32 UTC |
Source: | https://github.com/cran/mvtmeta |
This package contains functions to run fixed effects or random effects multivariate meta-analysis.
Package: | mvtmeta |
Type: | Package |
Version: | 1.1 |
Date: | 2020-02-11 |
License: | GPL-3 |
Use the function mvrmeta_fe to run the fixed effects multivariate meta-analysis. Use the function mvrmeta_re to run the random effects multivariate meta-analysis.
Han Chen
Maintainer: Han Chen <[email protected]>
Chen, H., Manning, A.K. and Dupuis J. (2012) A method of moments estimator for random effect multivariate meta-analysis. Biometrics 68, 1278-1284.
y <- matrix(c(0.3161, 7.4015, 0.4278, -0.3201, 6.9426, -0.9816, 0.6983, 4.6680, -0.2415, 3.2736, 4.3080, 0.2052, -0.1599, 5.6398, -0.6782, -0.6989, 6.3158, -0.7918, -3.6094, 9.3429, -2.8711, 0.2172,6.4078,-0.6093), 3, 8) cov <- array(c(2.3568, -1.2105, 0.8524, -1.2105, 9.7029, -6.1753, 0.8524, -6.1753, 4.4114, 0.2529, 0.1498, -0.1019, 0.1498, 0.7016, -0.4167, -0.1019, -0.4167, 0.2743, 0.1444, -0.0652, 0.0433, -0.0652, 0.6481, -0.3899, 0.0433, -0.3899, 0.2608, 3.8428, -4.5587, 3.2892, -4.5587, 10.3517, -6.6684, 3.2892, -6.6684, 4.8268, 0.1161, -0.0992, 0.0645, -0.0992, 0.4363, -0.2610, 0.0645, -0.2610, 0.1733, 0.1603, 0.0242, -0.0129, 0.0242, 0.7697, -0.4686, -0.0129, -0.4686, 0.3180, 3.2054, -1.1984, 0.8437, -1.1984, 17.8889, -10.7697, 0.8437, -10.7697, 7.2101, 0.0278, 0.0136, -0.0091, 0.0136, 0.1184, -0.0716, -0.0091, -0.0716, 0.0482), c(3, 3, 8)) fe <- mvtmeta_fe(y, cov) re <- mvtmeta_re(y, cov)
y <- matrix(c(0.3161, 7.4015, 0.4278, -0.3201, 6.9426, -0.9816, 0.6983, 4.6680, -0.2415, 3.2736, 4.3080, 0.2052, -0.1599, 5.6398, -0.6782, -0.6989, 6.3158, -0.7918, -3.6094, 9.3429, -2.8711, 0.2172,6.4078,-0.6093), 3, 8) cov <- array(c(2.3568, -1.2105, 0.8524, -1.2105, 9.7029, -6.1753, 0.8524, -6.1753, 4.4114, 0.2529, 0.1498, -0.1019, 0.1498, 0.7016, -0.4167, -0.1019, -0.4167, 0.2743, 0.1444, -0.0652, 0.0433, -0.0652, 0.6481, -0.3899, 0.0433, -0.3899, 0.2608, 3.8428, -4.5587, 3.2892, -4.5587, 10.3517, -6.6684, 3.2892, -6.6684, 4.8268, 0.1161, -0.0992, 0.0645, -0.0992, 0.4363, -0.2610, 0.0645, -0.2610, 0.1733, 0.1603, 0.0242, -0.0129, 0.0242, 0.7697, -0.4686, -0.0129, -0.4686, 0.3180, 3.2054, -1.1984, 0.8437, -1.1984, 17.8889, -10.7697, 0.8437, -10.7697, 7.2101, 0.0278, 0.0136, -0.0091, 0.0136, 0.1184, -0.0716, -0.0091, -0.0716, 0.0482), c(3, 3, 8)) fe <- mvtmeta_fe(y, cov) re <- mvtmeta_re(y, cov)
This function computes the effect estimates and their covariance matrix for fixed effects multivariate meta-analysis, which is an extension of the inverse-variance fixed effects meta-analysis in the univariate case.
mvtmeta_fe(y, cov)
mvtmeta_fe(y, cov)
y |
A matrix. Each column represents observed effect estimates in each study. |
cov |
An array with the first two dimensions equal to the number of effects, and the third dimension equal to the number of studies. Each stratum is a symmetric, positive definite matrix representing corresponding covariance matrix from each study. |
This function is an multivariate extension of the inverse-variance fixed effects meta-analysis. It computes the summary effect estimates and their covariance matrix using observed study-specific effect estimates and covariance matrices. Please make sure that the orders of effects and studies in y
and cov
match.
Please note that fixed effects meta-analysis may provide invalid results when heterogeneity is present.
beta |
Summary effect estimates from meta-analysis. |
cov |
The covariance matrix for the summary effect estimates. |
Han Chen
Chen, H., Manning, A.K. and Dupuis J. (2012) A method of moments estimator for random effect multivariate meta-analysis. Biometrics 68, 1278-1284.
y <- matrix(c(0.3161, 7.4015, 0.4278, -0.3201, 6.9426, -0.9816, 0.6983, 4.6680, -0.2415, 3.2736, 4.3080, 0.2052, -0.1599, 5.6398, -0.6782, -0.6989, 6.3158, -0.7918, -3.6094, 9.3429, -2.8711, 0.2172,6.4078,-0.6093), 3, 8) cov <- array(c(2.3568, -1.2105, 0.8524, -1.2105, 9.7029, -6.1753, 0.8524, -6.1753, 4.4114, 0.2529, 0.1498, -0.1019, 0.1498, 0.7016, -0.4167, -0.1019, -0.4167, 0.2743, 0.1444, -0.0652, 0.0433, -0.0652, 0.6481, -0.3899, 0.0433, -0.3899, 0.2608, 3.8428, -4.5587, 3.2892, -4.5587, 10.3517, -6.6684, 3.2892, -6.6684, 4.8268, 0.1161, -0.0992, 0.0645, -0.0992, 0.4363, -0.2610, 0.0645, -0.2610, 0.1733, 0.1603, 0.0242, -0.0129, 0.0242, 0.7697, -0.4686, -0.0129, -0.4686, 0.3180, 3.2054, -1.1984, 0.8437, -1.1984, 17.8889, -10.7697, 0.8437, -10.7697, 7.2101, 0.0278, 0.0136, -0.0091, 0.0136, 0.1184, -0.0716, -0.0091, -0.0716, 0.0482), c(3, 3, 8)) fe <- mvtmeta_fe(y, cov) fe
y <- matrix(c(0.3161, 7.4015, 0.4278, -0.3201, 6.9426, -0.9816, 0.6983, 4.6680, -0.2415, 3.2736, 4.3080, 0.2052, -0.1599, 5.6398, -0.6782, -0.6989, 6.3158, -0.7918, -3.6094, 9.3429, -2.8711, 0.2172,6.4078,-0.6093), 3, 8) cov <- array(c(2.3568, -1.2105, 0.8524, -1.2105, 9.7029, -6.1753, 0.8524, -6.1753, 4.4114, 0.2529, 0.1498, -0.1019, 0.1498, 0.7016, -0.4167, -0.1019, -0.4167, 0.2743, 0.1444, -0.0652, 0.0433, -0.0652, 0.6481, -0.3899, 0.0433, -0.3899, 0.2608, 3.8428, -4.5587, 3.2892, -4.5587, 10.3517, -6.6684, 3.2892, -6.6684, 4.8268, 0.1161, -0.0992, 0.0645, -0.0992, 0.4363, -0.2610, 0.0645, -0.2610, 0.1733, 0.1603, 0.0242, -0.0129, 0.0242, 0.7697, -0.4686, -0.0129, -0.4686, 0.3180, 3.2054, -1.1984, 0.8437, -1.1984, 17.8889, -10.7697, 0.8437, -10.7697, 7.2101, 0.0278, 0.0136, -0.0091, 0.0136, 0.1184, -0.0716, -0.0091, -0.0716, 0.0482), c(3, 3, 8)) fe <- mvtmeta_fe(y, cov) fe
This function computes the effect estimates, their covariance matrix and between-study covariance matrix for random effects multivariate meta-analysis.
mvtmeta_re(y, cov)
mvtmeta_re(y, cov)
y |
A matrix. Each column represents observed effect estimates in each study. |
cov |
An array with the first two dimensions equal to the number of effects, and the third dimension equal to the number of studies. Each stratum is a symmetric, positive definite matrix representing corresponding covariance matrix from each study. |
This function performs random effects multivariate meta-analysis. It computes the between-study covariance matrix as a method of moments estimate (Chen et al., 2012), which is a multivariate extension of DerSimonian and Laird's estimator in the univariate case. The computation does not require permutation.
If the between-study covariance matrix is not positive semi-definite (usually due to low heterogeneity or small number of studies), it is automatically fixed to be a positive semi-definite estimate by eigendecomposition and setting negative eigenvalues to 0.
This function then computes the summary effect estimates and their covariance matrix based on the random effects multivariate meta-analysis method and the positive semi-definite between-study covariance matrix estimate.
beta |
Summary effect estimates from meta-analysis. |
cov |
The covariance matrix for the summary effect estimates. |
between |
The between-study covariance matrix estimate. |
negeigen |
Number of negative eigenvalues of the original between-study covariance matrix estimate. |
Han Chen
Chen, H., Manning, A.K. and Dupuis J. (2012) A method of moments estimator for random effect multivariate meta-analysis. Biometrics 68, 1278-1284.
y <- matrix(c(0.3161, 7.4015, 0.4278, -0.3201, 6.9426, -0.9816, 0.6983, 4.6680, -0.2415, 3.2736, 4.3080, 0.2052, -0.1599, 5.6398, -0.6782, -0.6989, 6.3158, -0.7918, -3.6094, 9.3429, -2.8711, 0.2172,6.4078,-0.6093), 3, 8) cov <- array(c(2.3568, -1.2105, 0.8524, -1.2105, 9.7029, -6.1753, 0.8524, -6.1753, 4.4114, 0.2529, 0.1498, -0.1019, 0.1498, 0.7016, -0.4167, -0.1019, -0.4167, 0.2743, 0.1444, -0.0652, 0.0433, -0.0652, 0.6481, -0.3899, 0.0433, -0.3899, 0.2608, 3.8428, -4.5587, 3.2892, -4.5587, 10.3517, -6.6684, 3.2892, -6.6684, 4.8268, 0.1161, -0.0992, 0.0645, -0.0992, 0.4363, -0.2610, 0.0645, -0.2610, 0.1733, 0.1603, 0.0242, -0.0129, 0.0242, 0.7697, -0.4686, -0.0129, -0.4686, 0.3180, 3.2054, -1.1984, 0.8437, -1.1984, 17.8889, -10.7697, 0.8437, -10.7697, 7.2101, 0.0278, 0.0136, -0.0091, 0.0136, 0.1184, -0.0716, -0.0091, -0.0716, 0.0482), c(3, 3, 8)) re <- mvtmeta_re(y, cov) re
y <- matrix(c(0.3161, 7.4015, 0.4278, -0.3201, 6.9426, -0.9816, 0.6983, 4.6680, -0.2415, 3.2736, 4.3080, 0.2052, -0.1599, 5.6398, -0.6782, -0.6989, 6.3158, -0.7918, -3.6094, 9.3429, -2.8711, 0.2172,6.4078,-0.6093), 3, 8) cov <- array(c(2.3568, -1.2105, 0.8524, -1.2105, 9.7029, -6.1753, 0.8524, -6.1753, 4.4114, 0.2529, 0.1498, -0.1019, 0.1498, 0.7016, -0.4167, -0.1019, -0.4167, 0.2743, 0.1444, -0.0652, 0.0433, -0.0652, 0.6481, -0.3899, 0.0433, -0.3899, 0.2608, 3.8428, -4.5587, 3.2892, -4.5587, 10.3517, -6.6684, 3.2892, -6.6684, 4.8268, 0.1161, -0.0992, 0.0645, -0.0992, 0.4363, -0.2610, 0.0645, -0.2610, 0.1733, 0.1603, 0.0242, -0.0129, 0.0242, 0.7697, -0.4686, -0.0129, -0.4686, 0.3180, 3.2054, -1.1984, 0.8437, -1.1984, 17.8889, -10.7697, 0.8437, -10.7697, 7.2101, 0.0278, 0.0136, -0.0091, 0.0136, 0.1184, -0.0716, -0.0091, -0.0716, 0.0482), c(3, 3, 8)) re <- mvtmeta_re(y, cov) re